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ABSTRACT

Tree ensemble methods provide promising predictions with models difficult to
interpret. Recent introduction of Shapley values for individualized feature contri-
butions, accompanied with several fast computing algorithms for predicted values,
shows intriguing results. However, individualizing coefficients of determination,
aka R2, for each feature is challenged by the underlying quadratic losses, although
these coefficients allow us to comparatively assess single feature’s contribution to
tree ensembles. Here we propose an efficient algorithm, Q-SHAP, that reduces the
computational complexity to polynomial time when calculating Shapley values
related to quadratic losses. Our extensive simulation studies demonstrate that
this approach not only enhances computational efficiency but also improves the
estimation accuracy of feature-specific coefficients of determination.

1 INTRODUCTION

Models built with tree ensembles are powerful but often complicated, making it challenging to
understand the influence of inputs. Feature importance plays a critical role in demystifying these
models and enhancing their interpretability by assigning each input feature a score. This is crucial in
domains like healthcare and biomedicine, where trust and interpretation of the model are essential
(Stiglic et al.||2020; Bussmann et al., 2021)). Common feature importance measures like gain can be
inconsistent (Lundberg and Leel 2017b)) while permutation importance lacks theoretical foundations
(Ishwaranl 2007)).

Shapley values, derived from cooperative game theory and introduced by |Shapley| (1953)), offer a
robust method for the fair distribution of payoffs generated by a coalition of players. This can be
analogously applied to assess the contribution of each feature in a machine learning model. It ensures
that each feature’s contribution is assessed by considering all possible combinations of features,
thereby providing a comprehensive understanding of feature impacts. Recent applications of Shapley
values have focused on local interpretation (Lundberg and Lee, [2017azb; |(Chau et al., |[2022), where
they are employed to examine the influence of individual features on specific predictions. Nonetheless,
there are numerous scenarios where global importance is preferred, such as analysis of the role of a
feature across the entire dataset (Molnar, |2020; |Covert et al., 2020).

Among the works that compute Shapley values in a global context, a popular approach is to use
model variance decomposition. [Lipovetsky and Conklin|(2001) decomposed R? in linear regression,
offering consistent interpretations even in the presence of multicollinearity. Owen and Prieur| (2017)
also conducted a conceptual analysis of Shapley values for the variance. However, computation
remains a significant challenge, as the calculation of Shapley values grows exponentially with the
number of features. To address this issue, several Monte Carlo-based methods have been proposed to
effectively reduce the computational burden (Song et al.l 2016} |Covert et al.| 2020} [Williamson and
Fengl 2020).

Although Monte Carlo-based, model-agnostic methods are more efficient than brute-force approaches,
they are still computationally intensive, especially when dealing with high-dimensional data that
requires extensive feature permutation sampling to ensure consistency (Lundberg and Lee, [2017a;
Lundberg et al., [2020). This challenge has prompted the development of methods that leverage
the specific structures of tree-based models. However, much of the focus has been on explaining
individual predictions, as seen with TreeSHAP (Lundberg and Lee} [2017b)), FastTreeSHAP (Yang,
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2021), and LinearTreeSHAP (Bifet et al., [2022). Bénard et al.| (2022)) considered population-level
importance using R?, specifically tailored for random forests (Breiman, 2001).

To the best of our knowledge, there is no available method to calculate Shapley values of quadratic
losses by leveraging structures of decision trees for fast computation. In this paper, we propose
Q-SHAP, which can decompose quadratic terms of predicted values of a decision tree into each
feature’s attribute in polynomial time. It leads to fast computation of feature-specific R for a decision
tree. We also extend our approach to Gradient Boosted Decision Trees.

The rest of the paper is structured as follows. In Section[2] we provide a brief overview of Shapley
values of R?. In Section we present our proposed algorithm Q-SHAP to calculate Shapley values of
R? in polynomial time for single trees, and then extend the approach for tree ensembles in Section
We justify the efficacy and efficiency of the algorithm using extensive simulations in Section [3]
and real data analysis in high dimension in Section[6] We conclude the paper with a discussion in
Section[7]

2  SHAPLEY VALUES OF R? FOR INDIVIDUAL FEATURES

2.1 MODEL SPECIFICATION

Here we investigate a specific label Y and its explainability by a full set of p features X =
(X1,X2,--+,X,). For any subset FF C P = {1,2,---,p}, we define the corresponding set of
features as Xr = (X;) er.

Suppose that, for any set of features X , an oracle model m can be built such that, for any specific
value ¢ = (21,22, -, Tp),
mp(z) = ElY|Xp = (z))jer].

The Shapley value of j-th feature, in terms of its contribution to the total variation, is defined as
1 p—1
o= = ) — 1
Gp2 o oar(ma) Z | (var(mpogy) var(mp))/ < IF| ) ; (1)
FCP\{5}

where | F'| is the number of features in F'. The term var(mpyy;}) is the variance explained by feature
set F'U {j} and the term var(mp) is the variance explained solely by set F'. This definition is
analogous to|Covert et al.| (2020) and [Williamson and Feng| (2020). By averaging over all possible
feature combinations, the Shapley values are the only solution that satisfies the desired properties of
symmetry, efficiency, additivity, and dummy (Shapley}, |1953).

2.2 EMPIRICAL ESTIMATION

Suppose we have a set of data with sample size n observed for both label and features as
Y (Y192, s Yn),
X = (X, X, X,) = (xF,xL, - xT)"
Accordingly, we denote the observed data of features in subset F' as
X.p=(X;)jer-

Suppose that, for each subset F' of features, a single optimal model 72 is built on data (Y, X.F).
Then the i-th label can be predicted with

yAZ(XF) = mF(XZ)
2.3 FROM R? TO A QUADRATIC LOSS

We will establish the connection of R? to a quadratic loss through equation . We define the
quadratic loss on the optimal model 7y as
Qr =Y (yi —mr(x))’ ©)

i=1
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for any set of features F'. With mg(x;.) = §, we have Qy = >, (y; — §)?. Following the law of
total variance, we can estimate var(mg) by

var(mrp) = (Qp — Qr) /n.

Thus, an empirical estimate of (E]) is

1 -1
P2, = ~000 Y. (Qrugy —QF)/( IF| )

FCP\{5}

which is proportional to a Shapley value for the sum of squared errors, i.e., the quadratic loss in (2).

2.4 FROM QUADRATIC LOSS TO Q-SHAP

We now further reduce Shapley values of the sum of squared errors to Shapley values of linear and
quadratic terms of predicted values. Expanding the loss function in (2), we can rewrite,

Pre; = Z Z My, (%) = mp(xi.) — 2(hru; (xi.) TﬁF(sz))yi)/< |F|1>

O pep\{j}i=1

To calculate this, we define the Shapley value for each sample 7 as,

bpej(xi) = _]ﬁ Z (T?L%?uj(xi)_m%(xi'))/<p|;‘|1)

FCP\{5}

2 S Gt () /(7).

FCP\{j}

which is a linear combination of two sets of Shapley values, i.e., Shapley values of predicted value
mp, which are ready to be calculated (Lundberg and Lee} 2017b} | Yang, [2021} Bifet et al.,2022)), and
Shapley values of the quadratic term of predicted value Mm%, i.e.,

P2 (%) = ! Z (m%u;(xz) m%(xi~))/(p|;|1>a 3)

P pcmin

for which we will develop the algorithm Q-SHAP to calculate. For the rest of the paper, we will
focus on computing the Shapley values in Equation (3)) in polynomial time for tree-based models and
carrying it over to calculate feature-specific R2.

3 THE ALGORITHM Q-SHAP FOR SINGLE TREES

Unlike most regression problems that can yield infinitely many predictions across the diverse input
space X, decision trees restrict predictions to a finite set, specifically to the values at each leaf
node. This nature revitalizes hope in previously unattainable solutions to Shapley values in decision
tree-based models. The main idea of our algorithm lies in the fact that Shapley values with various
targets such as predictions and various loss functions, are essentially weighted functions of the leaf
predictions. While Lundberg et al.| (2020) suggests that explaining the loss function for a “path-
dependent” algorithm is challenging, we provide an exact solution to decomposing quadratic losses
using our Q-SHAP. Q-SHAP works for tree ensembles. For simplicity, we here illustrate it with a
single decision tree.

3.1 NOTATIONS

We assume the underlying decision tree has the maximum depth at D and a total of L leaves, and
use [ to denote a specific leaf. We further introduce a dot product for polynomials for subsequent
calculation. For two polynomials A(z) = Y"1 a;2" and B(z) = Y., b;z", we define their dot
product as A(z) - B(z) = > a;b;.
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3.2 DISTRIBUTING THE PREDICTION TO LEAVES

Decision trees match each data point to one leaf for prediction. However, for our prediction defined
on any subset F', a data point x;. can fall into multiple leaves due to the uncertainty by unspecified
features P\ F'. We can calculate i p(x;.), following TreeSHAP, as the empirical mean by aggregating
the weighted prediction on each leaf,

mp(xi.) = ZmlF‘(Xi~)v “)
1

where 71}, is the weighted prediction from leaf [ in a tree built on feature set F.

Given an oracle tree built on all available features, we try to recover the oracle tree for a subset of
features without rebuilding, following [Bifet et al.| (2022)) and |[Karczmarz et al.| (2022)). For example,
let us take the tree built on two features X; and X, as shown in Figure[l| Figure[2]can be viewed
as the oracle tree built solely on feature X7, and hence X, no longer exists in the tree. Therefore,
we replace it with a pseudo internal node to preserve the structure of the original full oracle tree and
pave the way for further formulation.

/7 xp<30 0\ /7 x=30
[ ‘ (
\ 16 \ 16 /
" Y4 N
7 X 4 X
06 04 0.6 04
—
10 7 xpsso O\ 10
[ ‘
‘\\ 25 /
L — 1
A P \ X 1 / \
0.5 0.5 0.5 0.5
20 30 20 30

L Iy [ b3

Figure 1: Decision tree built on X; and X, Figure 2: Hypothetical decision tree with X only

With a data point x;. = (40, 25), we illustrate the calculation in Equation (4) by first calculating
the predicted value for the tree in Figure miy(xi.) = ml{ll} (x;.) + ml{21} (x;.) + ml{?»l}(xi.) =
0 x 10 + 0.5 x 20 4+ 0.5 x 30. When the tree is built with an additional feature 7 = 2 as shown in
Figure (1| we have the predicted value 727 2y (x;.) = ml{lm}(xi.) + ml{2172}(xi.) + mf{3172}(xi_) =
1x0x10+0.5"1 x 0.5 x 20+ 0 x 0.5 x 30 where the bold numbers reweight mf{l}(xi‘) for
ml{m} (x;.). Let us take a closer look at these weights, each corresponding to one leaf. For leaf

11, the weight is 1 since the newly added feature X5 is not involved in its path and the reweighted
prediction remains as zero. For leaf [5, the reweighted prediction is lifted up with the weight inversely
proportional to the previous probability because x;. follows its path to the leaf with probability 1. On
the other hand, although the path to leaf /5 includes the newly added feature but x;. doesn’t follow
this path, resulting in a weight at 0. Next we will generalize such a reweighting strategy to calculate
for trees with different sets of features.

Denote F! the features involved in the path to leaf [ and F'(x;.) the subset of F! whose decision
criteria are satisfied by x;.. Note that each feature j € F'! may appear multiple times in the path to
leaf [ so we denote né-’c the number of samples passing through the node which is attached to the c-th

appearance. We similarly define néc(xl) for each feature j € F'(x;.).

For any feature 7 € P, we can define the weight function based on a partition of P into three subsets
Fl(Xi‘), FI\FI(XZ‘.), and P\Fl,

TLl‘ . .
[l o2, ifd € Fl(x);
1 A Jie\ T
wj(xi.) = 9 0, if j € FI\F!(x;.);
1, if j € P\F".

Therefore, for j ¢ F, we have

Mipu; (xi) = W (% )i (xi.).
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Recursive application of the above formula leads to
b (x;.) H wh (x;. m@,
kEF
where m& =m! 7; with n! the sample size at leaf [, n the total sample size, and 1! the predicted
value at leaf [ based on the model built on all features.

When F' = (), the above result reduces to 1y (x;.) = >, m! ™ so the optimal prediction is just the
mean for all data points, which is consistent with 74 (x;.) = y

We can rewrite (3)) as

Pin2 (i)
1 l Al 1 p—1
= ]; Z (Z (ij(Xi.) — 1) rn,(z)2 H ka(Xi.)> / ( |F|
FCP\{j} l keF
2 TR -1
o 2 | 2 Gy (o) g [T e (e >> /()
FCP\{j} \l1#l2 kEF
é Tl,j(xi~) + 2T2,j(x,;.).
‘We further define, for leaves [; and s,
Tfllz (xi.)
1 L R -1
= Z ((wé (Xi-)’lU; (x.) — 1) i Hwk (xi.)wk? (x;. )>/<p|F| >, (5)
FCP\{j} keF

and we have T ;(x;.) = > 4, T]l-ll2 (xi.), Ty j(xi.) = >, TI(x;.). Therefore, we will focus on
the calculation of T2 x;.) in ({5) the rest of this section.

j
We can reduce the calculation of [[,.p wf@l (x;. )wfj (x;.) in H by only calculating
[licr wh (%, )wk (x;.) with F_ = F 0 (F1 U F2), because [emr wh (%) w2 (x;.) = 1. In

combination with the proposition below, computation in (3)) can be dramatically reduced from the
full feature set P to a set only related to the corresponding leaves in a tree.

Proposition 1 For any well-defined p, n, | F|,
SHEWIE

-1 n—1y -

k=0 p(\}{:Hk) n( |F\)

We leave the proof of Proposition |1|in Appendix [Al Further denote nyo = |F'* U F'2| and a

polynomial of z, Ph!2(z) = [reriupiay;(z + Wi (x;.)wk (x;.)). We then define a coefficient

polynomial C,,,, (z) = (nul,l)zo + (nu.l,l)zl +...4 (nTl,l)z
0 1

nijg—1

niz—1

Theorem 1
1 L N
Te) = (gt wy (ca) = g i [Co, (2) - PR (2)]
Proof. With Proposition[T} we can write (3) as

niz—1 1 |F|=t

1 Al
T]hlz (XZ) — 7(“’51 (Xi')wéz( ) _ 1) l1 é)z m Z H wk xz wk x7 )
t=0

n
12 t FCFUUF!2\j keF

We further notice that lefc‘?h UFi2\j

Phlz(2), hence the equation holds with C,,,, (z) adjusting the weight based on the size of set 7. W

[licr wh! (x;.)wk? (x;.) is the coefficient of 2! in polynomial
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We only need to consider feature j €|F!* U F'2| as, otherwise, we have T;lb (x;.) = 0 following the
definition of w'(x;.). Note that, when there is a feature in set F* that doesn’t belong to F'* (x;.) N
Fl2(x;.)\j, we have [, » w}! (x;.)wi? (x;.) = 0. Thus we can further simplify the term to

lerb (Xz)
- Fle
1 I Iy e niz—1 1 |F|=t . .
— n—m(wj (xi.)w (%) — 1)ing g ) 3 TT et (s ot ().
t=0 t

FCFU (x;.)NF'2(x;.)\j k€F

Consequently, the evaluation of P!12(2z) can be reduced to a much smaller set.

3.3 THE ALGORITHM

In this section, we will introduce our algorithms. Theorem |lI{demonstrates that we can construct
a polynomial form of the NP-problem. Now we introduce a fast and stable evaluation for the dot
product of a coefficient polynomial C'(z) where we know the coefficients and a polynomial P(z)
with a known product form, involved in Theorem T}

Proposition 2 Let w be a vector of the complex n-th roots of unity whose element is exp(%)
for k = 0,1.,....,n — 1, ¢ the coefficient vector of C(z), and IFFT the Inverse Fast Fourier
Transformation. Then

C(z) - P(z) = P(w)TIFFT(c).

The proof of Proposition [2]is shown in Appendix [A] We facilitate the computation via the complex
roots of unity because of their numerical stability and fast operations in matrix multiplications. Due
to the potential issue of ill condition, especially at large degrees, our calculation avoids inversion of
the Vandermonde matrices, although it has been proposed to facilitate the computing by Bifet et al.
(2022). In addition, for each sample size n, we only need to calculate IFFT(c) once, up to order D
in O(nlog(n)) operations, and the results can be saved for the rest of calculation through Q-SHAP.
Note that term & and term n — k in P(w) are complex conjugates, and, for a real vector ¢, IFFT(c)
also has the conjugate property for paired term k and term n — k. Consequently, the dot product of
P(w) and IFFT(c) inherits the conjugate property and its imaginary parts are canceled upon addition.
Therefore, we only need evaluate the dot product at half of the n complex roots.

We can aggregate the values of leaf combinations to derive the Shapley values of squared predictions
using Q-SHAP as in Algorithm and then calculate the Shapley values of R? using RSQ-SHAP as
in Algorithm The calculation of feature-specific R? uses the iterative Algorithm instead of a
recursive one. As detailed in Appendix [E} the time complexity of the algorithm is O(L?D?) for a
single tree, which is super fast when the maximum tree depth is not too large.

Algorithm 1 Q-SHAP

Q-SHAP(x;.)
Initialize T[j] =0forj=1,--- ,p
for [, € indexset0,...,L —1do
for [; € index setly,...,L —1do
LCt?’ng = |F‘l1 UFl2|
for j € F'1 U 'z do
Let t[j] = 1w (xi )wi? (x:.) = g 10 [Cnyy (2) - P12 (2)]
lf ll # lg then
T[j] = T[5] + 2t[5]

else
T[j] = T[j] + t[4]
end if
end for
end for
end for
return T' = (T'[1],T[2],--- , T[p])
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Algorithm 2 RSQ-SHAP

RSQ-SHAP(j) = — - 37, {Q-SHAP(x;.)[j] — 2y;SHAP(x;.)[j]}

4 THE ALGORITHM Q-SHAP FOR TREE ENSEMBLES FROM BOOSTING

Tree ensembles from Gradient Boosted Machines (GBM) (Friedman, |2001) greatly improve pre-
dictive performance by aggregating many weak learners (Chen and Guestrin, 2016} Ke et al., 2017}
Prokhorenkova et al., |2018). Each tree, say tree k, is constructed on the residuals from the previous
tree, i.e., tree k — 1. We assume that there are a total of K trees in the ensemble and the quadratic

loss by the first k trees, with all features in P, is ng ). Denoting Q§3 ) — Qg the k-th tree reduces
the loss by

AQY =RV - QY

with the tree ensemble reducing the total loss by
K
K k
Q- Qp =3 AQp).
k=1

Per our interest in feature-specific R?, we resort to the quadratic loss defined as the sum of squared
errors in (2).

On the other hand, the k-th tree provides the prediction mgf )(xi.). Therefore, the prediction by

the first k trees can be recursively calculated as 3; ™ (X) = gji(k_l)(X) + amg)(xi.),where !
is the learning rate and Q;O)(X) = y. Note that the residuals after building (k — 1) tree are
{r,(k_l) =y — ng_l)(X) :1=1,2,--- n}, which are taken to build the k-th tree. Thus,

3

AQW =37 F 2N (Y —anm®) (%)) = = Y (@2ml) (xi) — 20l (x,.)).

i=1 i=1 i=1

Therefore, the decomposition of AQ%C ) for feature-specific Shapley values in the k-th tree is again

subject to the decomposition of two sets of values, i.e., both the predicted value rhgg ) (x;.) and its
quadratic term, which can be similarly dealt with the algorithms proposed in the previous section.

5 SIMULATION STUDY

One of the challenges in assessing methods that explain predictions is the typical absence of a
definitive ground truth. Therefore, to fairly demonstrate the fidelity of our methodology, we must rely
on synthetic data that allows for the calculation of the theoretical Shapley values. Here we consider
three different models,

a. Y:4X175X2+6X3+6;
b. Y=4X1 —5X2—|—6X3+3X1X2—X1X3—|—6;
C. Y:4X1 —5X2—|—6X3+3X1X2—X1X2X3—|—6.

All three features involved in the models are generated from Bernoulli distributions,
X1 ~ Bernoulli(0.6), X5 ~ Bernoulli(0.7), X3 ~ Bernoulli(0.5).

We also simulate additional nuisance features independently from Bernoulli(0.5) to make the
total number of features p = 100 and p = 500, respectively. The error term e is generated from
N(0, af) with o, at three different levels, i.e., 0.5, 1, and 1.5. The theoretical values of total R?
and feature-specific R? are shown in Table [I|of Appendix [B|as well as indicated by dashed lines in
Figure[3]

We evaluate the performance of three different methods, our proposed Q-SHAP, SAGE by |Covert;
et al[(2020), and SPVIM by Williamson and Feng|(2020), in calculating the feature-specific R* for
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(a) X1-specific R? (b) X2-specific R?

Figure 3: Boxplots of (a) X;-specific, (b) X2-specific, (¢) X3-specific, and (d) the sum of all feature-
specific R? in the three models with n = 1,000, p = 100, and o = 1.5. The dashed lines show the
theoretical R2.

the above three models with data sets of different sample sizes at n = 500, 1000, 2000, and 5000. We
use package sage-importance for SAGE and package vimpy for SPVIM to calculate feature-specific
Shapley values of total explained variance, which are divided by the total variance for corresponding
feature-specific R? values.

For each setting, we generated 1,000 data sets. For each data set, we built a tree ensemble using
XGBoost (Chen and Guestrin, |2016) with tuning parameters optimized via 5-fold cross-validation
and grid search in a parameter space specified with the learning rate in {0.01,0.05, 0.1} and number
of estimators in {50, 100, 200, 300, - - - , 1000}. We fixed the maximum depth of models a, b, and ¢ at
1, 2, and 3 respectively. Figure [3|show the calculated feature-specific R? for the first three features as
well as the sum of all feature-specific R? for all three models with n = 1000, p = 100, and o, = 1.5.
The results of the three models in other settings are shown in Appendix |C| Overall, Q-SHAP provides
a more stable and accurate calculation of feature-specific R? than the other two methods.

We divide all features into two groups, signal features (the first three) and nuisance features (the rest).
For each group, we calculated the mean absolute error (MAE) by comparing feature-specific 2
values to the theoretical ones in each of the 1,000 datasets and averaged MAE over the 1,000 datasets,
shown in Figure 4 Note that, by limiting memory to 2GB, SAGE can only report R? for the data sets
with sample size at 500 and 1,000.

For both signal and nuisance features, Q-SHAP and SAGE exhibit consistent behavior across all
models. In contrast, SPVIM tends to bias the calculation, especially for small sample sizes, indicated
by the rapid increase of MMAE when the sample size goes down. Among signal features, Q-SHAP
has better accuracy than SAGE, followed by SPVIM in general. All methods tend to have better
accuracy when sample size increases.

For the nuisance features, only SPVIM is biased away from 0. On the other hand, both Q-SHAP and
SAGE have almost no bias for nuisance features across different sample sizes. For all three methods,
R? of signal features tends to have a larger bias than nuisance features.
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Model a Model b Model ¢ Model a Model b Model ¢
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Figure 4: Mean MAE with p = 100 Figure 5: Running Time in log; ,(seconds)

We compared the computational time of the three different methods by running all algorithms in
parallel on a full node consisting of two AMD CPUs@2.2GHz with 128 cores and 256 GB memory.
We unified the environment with the help of a Singularity container (Kurtzer et al.,|2017) built under
Python version 3.11.6. Due to the large size of the simulation, we limit all methods to a maximum
wall time of 4 hours per dataset on a single core, with memory limited to 2 GB. The running times
are shown in Figure[5] Both SAGE and SPVIM demanded a long time to compute even with only
100 features. Q-SHAP is hundreds of times faster than both SAGE and SPVIM in general and is the
only method that can be completed when the dimension is 500 in constrained computation time and
memory.

6 REAL DATA ANALYSIS

We illustrate the utility of Q-SHAP by applying it to predicting Gleason score, a grading prognosis of
men with prostate cancer, with gene expressions. The dataset was obtained from The Cancer Genome
Atlas Program (TCGA) (Weinstein et al., 2013)), including 551 samples and 17,261 features. The
Gleason score was retrieved through TCGAbiolinks (Colaprico et al.,|2016) and further adjusted
for age and race as potential confounding factors. The gene expression data was downloaded from
UCSC Xena (Goldman et al.} [2020) and preprocessed using SIGNET (Jiang et al., [2023)).

We first constructed the tree ensemble using XGBoost with tuning parameters optimized via 5-fold
cross-validation and random research in a parameter space specified with the number of trees in
{50, 100, 500, 1000, 1500, 2000, 2500, 3000}, maximum depth in {1,2,--- , 6}, and learning rate in
{0.01,0.05,0.1}. As both SAGE and SPVIM cannot manage this large number of features, we only
applied Q-SHAP to the tree ensemble built on 17,261 features, which took 11 minutes to compute
and reported the sum of all feature-specific R? at 99.98% which is equivalent to the model R?. The
15 highest feature-specific R? values are reported in Figure @

To allow the application of both SAGE and SPVIM, we selected the top 100 features based on the
result of Q-SHAP, and rebuilt the tree ensemble with the selected 100 features using XGBoost. The
rebuilt tree ensemble reported a total of R? at 0.93. Calculating the 100 feature-specific R? values
took about 10 seconds of Q-SHAP, 16 minutes of SAGE, and 67 hours of SPVIM. As shown in
Figures SPVIM tends to overstate the feature-specific R? although all of its feature-specific
R? only sums up to 0.72, much lower than 0.93 reported by Q-SHAP. On the other hand, SAGE
tends to underestimate the feature-specific R? and all its feature-specific R? also sums up to only
0.73, but its top 15 features match well with those by Q-SHAP. We also applied the three methods to
two additional datasets, and the results are summarized in Appendix [F| In summary, the real data
analysis shows consistent results with the simulation study, confirming that Q-SHAP is superior in
both computational time and the accuracy of feature-specific R.
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Figure 6: Top 15 of 17,261 R? by Q-SHAP
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The coefficient of determination, aka R?, measures the proportion of the total variation explained by
available features. Its additive decomposition, following (1953)), provides an ideal evaluation
of each feature’s attribute to explain the total variation. However, the calculation of corresponding
Shapley values is an NP-hard problem, and is further complicated by the complexities involved
in building tree ensembles. Recently, several methods (Lundberg and Lee| 2017b} [Yang], 2021}
2022) have been developed to leverage the structure of tree-based models and provide
computationally efficient algorithms to decompose the predicted values. However, decomposing
R? demands the decomposition of a quadratic loss reduction by multiple trees. We have shown
in Section [ that we can attribute the total loss reduction by the tree ensemble to each single tree,
and the tree-specific loss reductions are subject to further decomposition to each feature. However,
decomposing a quadratic loss of a single tree needs work with the squared terms of predicted values,
invalidating previously developed methods for predicted values. Thus we developed the Q-SHAP
algorithm to calculate Shapley values of squared terms of predicted values in polynomial time. The
algorithm works not only for R? but also for general quadratic losses. Ultimately, it may provide a
framework for more general loss functions via approximation.
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A PROOFS

We first establish the following lemma.

”i (|F|+k) <p—1— |F|—k> _ (p)
= k p—n—k n
Proof. Using Gould’s identity (Gould,|1972), we have

Dol Gy [ (it B of (4] ot B o Uiy B3 ()

k=0 k=0 k=0

Lemma 1

where we used the Hockey-Stick Identity in the last step. |

Proof of Proposition[I] Through expansion and Lemmal(I] we have

0D 1IN (F 4R — )l p— 1 — || — B)i(n — 1)!
2 ) T p2 G- D - HREIm 1 [F])

_ ;W_ (|F|k+ k) (p fpl_—nwfwkj k)
_1e=nl =D p-1\p 1
D (p—1)! (n—1>n n’

Proof of Proposition [2| We first rewrite the two polynomials

where V (z) is the Vandermonde matrix for vector z, and ¢ and a are the coefficients of polynomials
C(z) and P(z), respectively. Then the inner product

C(z)-P(z)=P(2)-C(z) = ale = (V(z)flp(z))Tc = P(Z)T(V(z)T)flc.
Letting

and noting that the Vandermonde matrix evaluated at w is symmetric, we have

(V@) =V = V),

whose multiplication with c is just the Inverse Fast Fourier transformation (IFFT) over ¢ (Geddes
et al.,|1992). Hence the proposition holds. |

B CALCULATION OF THEORETICAL SHAPLEY VALUES OF R?

Here we will calculate the theoretical feature-specific R? values of the following three models,

a. Y =p531X1+ B2 Xo+ B3X3+ ¢
b. Y =51 X1+ BoXo + 83Xz + 81 X1 Xo + B X1 X3 + €
c. Y =p1X1+ foXo+ B3 X3+ B4 X1 Xo + B X1 Xo X3 + €.

13
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With all three features generated from the Bernoulli distribution, we have

For Model a, we have

For Model b, we have
E(var(Y|Xy) =

E(X:) = BE(X}]) = pi &
var(X;) = pi(1 — p;) £ o7,
cov(X1, X1Xs2) = U%pg,
cov(X1 Xy, X1X3) = 01u2u3,
cov(Xy, X1 X2X3) = aluz,ug,
cov(X1Xo, X1 X2 X3) = 02,113,
var(X;1Xs)
(X1 X2X3) =

var

) = Bioi
ar(Y|Xy))
(Y[X2))
E(var(Y|X3))
(
(
(
(

202
1‘71

Biot
Y| X(12)
Y[X{1,33)
Y[X(2,3y))
) =o?.

6101 62‘72 53‘792,
+283B8505 11 + 2B4Bs0tpaps + o2,

=pip2(1 *P1p2) = U%z,
A 9
p1p2p3(1 — p1paps) = 07a3.

ﬂzaz + B3o3 + ol
5303 +Uga
5303 +Uea
+ 305 + o,
) = 303 + 0,
) = Bia5 + aZ,
:610'1 +Ue7

+ ity + Bi0%s + 2B1 8107 2 + 2618507 s + 2828403 11

+ (B3 + 2B3Bsp1 + Bep1)os + o2,

Beots + 2(B1 + Bapiz)Bsotus + 2638505 11 + o2,
Bioty +2(B1 + Bsps) Baci po + 28281051 + o2,

B 4 Bius + BEp3 + 281 Baps + 261 Bs iz + 2BaPspapz)or + o2,

E(var(Y|Xy) = (52 + 28284401 + 54/“)‘72
E(var(Y|X2) = (B + 261 Bapz + Bipe)ot + G305 +
E(var(Y|X3) = (8] + 2618513 + Beps)ot + B305 +
E(var(Y|X(1,0y) = (83 + 28351 + B3 )03 + o7,
E(var(Y|X(1,3y) = (85 + 262841 + Bim)os + o2,
E(UC”"(Y|X{2 3}) (

E(var(Y|X11,2,3)) = o?

For Model ¢, we have

var(Y) =

Biot + B305 + B30 + Bioty + Baotag + 2B1Ba0t i + 251550#12#3 +

2B2B405 11 + 2B2B505 11 fiz + 2838505 1 pi2 + 2BaBs 0oz + 02,

E(var(Y|X1)

+2B5B5 10312 + 02,
(BY + 2B1Bapz + Bip2)ot + B30 + Bepaots + 2(B1 + Ba)Bspzoius
+2B3B5 2031 + 02,

E(var(Y|X3) =

B(var(Y|Xs)) =

Biot + B3os +

+282(B4 + ﬂ5u3)02/11 + 0527

E var Y|X{1,2})

o

E
E

var(Y|X23y) =

(var(
(var(Y[Xq1,3y) =
(var(
(var(Y|X (1 2,3)) = 0?.

14

= (B3 + 2B2Bap1 + Bip1)05 + B303 + BEu1oss + 2(Ba + Ba)Bs 1o s

+ (BF + 2B4Bsp3 + B iz) oty + 2B1(Ba + Bspz) ot pa

= (B3 + 2B3Bsprp2 + Bapapiz)os + o7,
(ﬁ% + ﬂiﬂl + 55%/11,1143 + 25254/11 + 2ﬂ2ﬁ5ﬂlﬂ3 + 2ﬁ4ﬁ5ﬁ51/143)0'§ + 0527
(B} + Biua + BEuops + 2B1Bapa + 2B1 Bspiapis + 264 Bspizpiz)os + o2,
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For all of the cases, the Shapley values can be calculated as
1

o1 = _W {é[E(var(Y|X1)) —var(Y)] + é[E(UaT(Y|X{172}) — E(var(Y]X3))]

é[ (var(Y |X(s) ~ E(var(¥|Xa))] + 3 Bloar (VX1 2) = BV (varlXaa)]}.

92 = oo % 7WTYMQ-—WMYH+é@hmdﬂXﬁﬂ)—EwwﬁﬂXﬂﬂ

2 [Bloar(Y X)) — B(var(V|Xs))] + 3 [B(var(V|X(105) _Ew(nx{m}»]},
N {; var( Y|X3))*U‘”’(Y)]+é[E(vaT(Y|X{173})fE(var(Y|X1))]

S [Blwar(Y|Xs.0) — Bloar(Y]Xo)] + 3 [B(oar(Y]X(12,5) —E<var<Y|X{1,2}>>]}.

Therefore, the theoretical feature-specific R? in the three models can be evaluated and are shown in
Table[D

Table 1: Theoretical Feature-Specific R? in Simulated Models

RQ

Model e Total X3 Xo X3
0.50 09864 0.2094 0.2863 0.4907
a 1.00 09477 0.2012 0.2750 04715
1.50 0.8894 0.1888 0.2581 0.4425
0.50 09860 0.4390 0.1341 0.4129
b 1.00 09459 04212 0.1286 0.3961
1.50 0.8860 0.3945 0.1205 0.3710
0.50 09868 0.4288 0.1450 0.4130
c 1.00 09491 0.4124 0.1395 0.3972
1.50 0.8925 0.3878 0.1312 0.3735

C BOXPLOTS OF THE FIRST THREE FEATURE-SPECIFIC AND TOTAL R2
VALUES

We have compared the performance of three different methods, i.e., our proposed Q-SHAP, SAGE by
Covert et al.|(2020), and SPVIM by [Williamson and Feng| (2020), in calculating the feature-specific
R? as well as the sum of all feature-specific R? for the three models specified in Section [5, with
different settings, i.e., n € {500, 1000, 2000, 5000}, p € {100,500}, and o € {0.5,1,1.5}. The
results are shown in Fig. Note that the results of SAGE are unavailable in Fig.[I2{T7]because
it cannot report those R* with our limited computational resources, and the results of SPVIM are
unavailable in Fig. because it demands too much time to complete the computation when
p = 500.
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(a) Xi-specific R? (b) X2-specific R?
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Figure 10: Boxplots of (a) X;-specific, (b) Xs-specific, (c) Xs-specific, and (d) the sum of all
feature-specific R? in the three models with n = 500, p = 100. The dashed lines show the theoretical
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Figure 11: Boxplots of (a) X -specific, (b) X»-specific, (c) X3-specific, and (d) the sum of all feature-
specific R? in the three models with n = 1000, p = 100. The dashed lines show the theoretical R2.
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specific R? in the three models with n = 2000, p = 100. The dashed lines show the theoretical R2.
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17



Under review as a conference paper at ICLR 2025
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Figure 14: Boxplots of (a) X;-specific, (b) Xs-specific, (c) Xs-specific, and (d) the sum of all
feature-specific R? in the three models with n = 500, p = 500. The dashed lines show the theoretical
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Figure 15: Boxplots of (a) X -specific, (b) X»-specific, (c) X3-specific, and (d) the sum of all feature-
specific R? in the three models with n = 1000, p = 500. The dashed lines show the theoretical R2.
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Figure 16: Boxplots of (a) X -specific, (b) X2-specific, (c) X3-specific, and (d) the sum of all feature-
specific R? in the three models with n = 2000, p = 500. The dashed lines show the theoretical R2.
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Figure 17: Boxplots of (a) X;-specific, (b) Xs-specific, (c) X3-specific, and (d) the sum of all feature-
specific R? in the three models with n = 5000, p = 500. The dashed lines show the theoretical R?.
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D PLOTS OF THE MEAN ABSOLUTE ERROR (MAE)

Similar to Fig. 4| we show in Fig. the mean absolute error (MAE) of feature-specific R? for both
signal and nuisance features averaged over 1,000 datasets when p = 500. Note that the results of
SAGE and SPVIM are unavailable because none of them can complete the computation for p = 500
with limited computational resources.
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Figure 18: The mean of absolute error (MAE) of the feature-specific R? by Q-SHAP averaged across
1,000 datasets with p = 500

E COMPLEXITY OF THE ALGORITHM

Here we assume that the dataset includes n samples as well as p features, and a total of 1" trees are
constructed with the maximum tree depth D and maximum tree leaves L. We denote S the number
of permutations taken in SAGE with S = 1020 by default. Then, when the trees are constructed
by XGBoost, the complexity of SAGE is O(T'DSpn) (Covert et al.,{2020), and the complexity of
SPVIM is O(T Dpn?log n) (Williamson and Feng, 2020). Instead, the complexity of Q-SHAP is
O(T L?D?n) which doesn’t rely on the number of features p.

Let’s first consider the complexity of Q-SHAP in Algorithm 1 for a single tree and one sample. As
shown in Figure[T9] the two outer loops that iterate through the tree leaves, result in a complexity
of O(L?). Within the inner loop, the computation involves the number of features induced by each
pair of leaves, leading to O(D) operations. The evaluation of ¢[j] involves the computation of
C(z) - P(z), which takes O(D) operations since the number of union features between two leaves is
bounded by 2D. Combining these, the overall complexity for one tree and one sample is O(L2D?).
Thus, for the whole dataset, the complexity of Q-SHAP scales to O(nL?D?) for a single tree. With
the advancements introduced in Section 4, Q-SHAP has a total complexity of O(T'nL?D?) for the
ensemble of T" boosting trees.
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Figure 19: The Flowchart of Algorithm 1

The property that the complexity of Q-SHAP doesn’t rely on the number of features is a prominent
advantage of Q-SHAP and is critical in analyzing high-dimensional data. Such an advantage is
achieved via Proposition[T} which eliminates dependence on p by leveraging the internal structure of
the tree. Furthermore, unlike SAGE and SPVIM, which require extensive sampling, Q-SHAP directly
utilizes the tree’s weight function introduced in Section 3.2, eliminating the need for any sampling.

F ANALYSES OF ADDITIONAL REAL DATA

To further illustrate the utility of our proposed method, we further apply Q-SHAP, as well as SAGE
and SPVIM, to two additional publicly available datasets, i.e., healthcare insurance expenses E| and
S&P 500 stock prices from February 8, 2013 to February 7, 2018E| The healthcare insurance expenses

'https://www.kaggle.com/datasets/arunjangir245/healthcare-insurance-expenses/
data

“https://www.kaggle.com/datasets/camnugent/sandp500/data
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dataset includes eight features for each of the 1338 subjects besides their healthcare insurance costs.
For the S&P 500 dataset, we focused on predicting the daily return rate of NVIDIA stock from the
daily return rates of other 469 stocks which have full records of 1,258 business days.

The same settings described in Section 6 are applied to build the ensemble trees for these two
datasets. To make it feasible to obtain R? from SAGE and SPVIM for the S&P 500 dataset, we
applied Q-SHAP to first select the top 100 features and then rebuilt the ensemble trees with these 100
features.

As shown in Table 2| Q-SHAP is much faster than SAGE and SPVIM in calculating R? in both
datasets, with SPVIM taking much longer time than the other two.

Table 2: Computing Times

Q-SHAP SAGE SPVIM

Heathcare Insurance Expenses 32 seconds 6 minutes 22 minutes
S&P 500 41 seconds 26 hours 138 hours

Consistent with the simulation results, SAGE tends to underestimate the feature-specific R? values
and SPVIM tends to report unstable feature-specific R? values as they range from -0.0328 to 0.5646
for the healthcare insurance expenses dataset (Figure[20) and -0.3955 to 0.4571 for S&P 500 dataset
(Figure [2I). On the other hand, the tree ensemble for the healthcare insurance expenses data has
the model R? at 0.86, and that for S&P 500 has the model R? at 0.73. However, only the sums of
all feature-specific R? from Q-SHAP match these model R? values. Instead, SAGE reports 0.79
for healthcare insurance expenses and 0.50 for S&P, both are much lower than the model total R2.
SPVIM overestimates it for healthcare insurance expenses data with the sum of all feature-specific
R? at 0.9935 but underestimates it for S&P 500 data with the sum as -0.6642.

(a) Q-SHAP (b) SAGE (c) SPVIM

Figure 20: Feature-specific R? calculated by Q-SHAP, SAGE, and SPVIM for the healthcare
insurance data.

Shown in Figure (a) are the top 15 of all 469 features in the S&P 500 data with their R? calculated
by Q-SHAP. For the tree ensemble built with the selected 100 features, the top 15 feature-specific R?
values based on Q-SHAP, SAGE, and SPVIM are shown in [Q;Z}(b)-(d), respectively. We observed that
both Q-SHAP and SAGE report the same top three features but they differ at the forth feature with
Q-SHAP reporting the R? of MCHP at 0.069 but SAGE reporting the R? of MU at 0.034. On the
other hand, SPVIM reports a completely different set of three features at the top and the R? of MA at
0.457. As in the case of predicting Gleason score with prostate cancer patients in Section 6, the sum
of the top 15 R? by SPVIM is much larger than one.
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Figure 21: Feature-specific R? calculated by Q-SHAP, SAGE, and SPVIM for the S&P 500 data
including only 100 features.

(a) Top 15 of 469 R2 by Q-SHAP

(b) Top 15 of 100 R? by Q-SHAP
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Figure 22: Top 15 features in the S&P 500 data with R? calculated by Q-SHAP, SAGE, and SPVIM
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